Hyperbolization of locally compact non-complete metric spaces

نویسندگان

  • Zair Ibragimov
  • ZAIR IBRAGIMOV
چکیده

By a hyperbolization of a locally compact non-complete metric space (X, d) we mean equipping X with a Gromov hyperbolic metric dh so that the boundary at infinity ∂∞X of (X, dh) can be identified with the metric boundary ∂X of (X, d) via a quasisymmetric map. The aim of this note is to show that the Gromov hyperbolic metric dh, recently introduced by the author, hyperbolizes the space X. In addition, we show that if f is a power quasisymmetry between two locally compact non-complete metric spaces (X, d) and (Y, d), then the map f : (X, dh) → (Y, dh) is a quasiisometry, quantitatively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Gromov-hausdorff-prokhorov Distance between (locally) Compact Measure Spaces

We present an extension of the Gromov-Hausdorff metric on the set of compact metric spaces: the Gromov-Hausdorff-Prokhorov metric on the set of compact metric spaces endowed with a finite measure. We then extend it to the non-compact case by describing a metric on the set of rooted complete locally compact length spaces endowed with a locally finite measure. We prove that this space with the ex...

متن کامل

On a Metric on Translation Invariant Spaces

In this paper we de ne a metric on the collection of all translation invarinat spaces on a locally compact abelian group and we study some properties of the metric space.

متن کامل

Weighted Composition Operators Between Extended Lipschitz Algebras on Compact Metric Spaces

‎In this paper, we provide a complete description of weighted composition operators between extended Lipschitz algebras on compact metric spaces. We give necessary and sufficient conditions for the injectivity and the sujectivity of these operators. We also obtain some sufficient conditions and some necessary conditions for a weighted composition operator between these spaces to be compact.

متن کامل

A note on the Gromov - Hausdorff - Prokhorov distance between ( locally ) compact metric measure spaces ∗

We present an extension of the Gromov-Hausdorff metric on the set of compact metric spaces: the Gromov-Hausdorff-Prokhorov metric on the set of compact metric spaces endowed with a finite measure. We then extend it to the non-compact case by describing a metric on the set of rooted complete locally compact length spaces endowed with a boundedly finite measure. We prove that this space with the ...

متن کامل

One-point extensions of locally compact paracompact spaces

A space $Y$ is called an {em extension} of a space $X$, if $Y$ contains $X$ as a dense subspace. Two extensions of $X$ are said to be {em equivalent}, if there is a homeomorphism between them which fixes $X$ point-wise. For two (equivalence classes of) extensions $Y$ and $Y'$ of $X$ let $Yleq Y'$, if there is a continuous function of $Y'$ into $Y$ which fixes $X$ point-wise. An extension $Y$ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013